An index theorem for anti-self-dual orbifold-cone metrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost - Kähler Anti - Self - Dual Metrics

of the Dissertation Almost-Kähler Anti-Self-Dual Metrics by Inyoung Kim Doctor of Philosophy in Mathematics Stony Brook University 2014 We show the existence of strictly almost-Kähler anti-self-dual metrics on certain 4-manifolds by deforming a scalar-flat Kähler metric. On the other hand, we prove the non-existence of such metrics on certain other 4-manifolds by means of SeibergWitten theory. ...

متن کامل

Anti-Self-Dual Metrics and Kahler Geometry

into the rank-3 bundles of self-dual and anti-self-dual 2-forms, respectively defined as the ±l-eigenspaces of the Hodge star operator * : /\ -> / \ ; this just reflects the fact that the adjoint representation of 50(4) on the skew (4 x 4)-matrices is the sum of two 3-dimensional representations, as indicated by the Lie algebra isomorphism so(4) = so(3)©so(3). The decomposition (1) is conformal...

متن کامل

Toric Anti-self-dual Einstein Metrics via Complex Geometry

Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper [7]. The results complement the work of Calderbank–Pedersen [6], who describe where the ...

متن کامل

Explicit Self - Dual Metrics On

We display explicit half-conformally-flat metrics on the connected sum of any number of copies of the complex projective plane. These metrics are obtained from magnetic monopoles in hyperbolic 3-space by an analogue of the Gibbons-Hawking ansatz, and are conformal compactifications of asymptotically-flat, scalar-flat Kahler metrics on «-fold blow-ups of C . The corresponding twistor spaces are ...

متن کامل

Toric Self-dual Einstein Metrics as Quotients

We use the quaternion Kähler reduction technique to study old and new selfdual Einstein metrics of negative scalar curvature with at least a two-dimensional isometry group, and relate the quotient construction to the hyperbolic eigenfunction Ansatz. We focus in particular on the (semi-)quaternion Kähler quotients of (semi-)quaternion Kähler hyperboloids, analysing the completeness and topology,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2013

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.08.004